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1. INTRODUCTION

In this paper we discuss an algorithm for choosing a

best "partial basis" hil,---,hin from a collection of basis
functions hy,<++,h  to best approximate a given function f
with respect to a specified norm. Our results have been strongly
motivated by the difficult problem of choosing best locations
for antenna elements in a linear array. This problem, which
has been considered in various forms in the engineering litera-
ture ([1]-[4]), is formulated below so that the reader can
better understand the subsequent developments. In section 2

; we formulate the partial basis problem precisely, present an

algorithm for its solution, and discuss numerical results of

the application of the algorithm to the antenna design problem.

In section 3 some theoretical results are presented.
The field pattern of a symmetric line array of antenna 1
elements with real symmetric element currents is proportional

to the magnitude of

n
(1) p(u) = ] a cosgu, 0<Lusrm ,
k=1

where u = msin® . 6 is the angle measured from a normal
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to the array axis, Ek = xk/(k/Z), A is the wavelength of
the design frequency, and Xy is the distance of the kth

element from the center of the array. If the array aperture

is constrained to be at most A, say, then we will have
AR RS G e S A/2 . The basic objective is to vary
the element currents a, and locations Ek to make |p(u) |
small for u away from u=0, subject to the normalization

condition |p(0)] =1 . We formulate this as a problem of

approximating an ideal function

148 0 < u'g u,
(2) £ (u)

0 if uu<ucx<m

1

where 0 < u, < u;, <m (if u, < u,, we define £(u,) =0

also). As a measure of the approximation we use an Lr norm,

l<r<co,

- 1/
(3) ||f-p||={j w(u)lf(u)-p(u)ldu} :
lo.uolU [ulnrl

the most important case being r = 2 (least squares approximation),

or a uniform (minimax) norm

(4) |1£ - p|] = max w(u) | £(u) - p(u) | .
ue[o,uolu [ul,w]

Here w(u) is a continuous weight function,often chosen to ; 1

be w(u) =1 .
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Our formulation of the antenna design problem is then

n
|l £(u) -} a, cos £ u I

([ minimize
ak' Ek k=1
(5) { subject to 0 < El Sessg ELS L
and Ek+1- Ek >4 >0, k=1,c0°,n-1
\

where A > 0 is specified and L serves to limit the aperture
of the array. The condition Ek - Ek-l > A prevents any two
elements from getting arbitrarily close together. This
assumption is natural on physical grounds; furthermore it has
an important effect in simplifying the mathematics.

An important feature of our approach to problem (5) is
restricting the variables 51,--~,5n to a discrete set
T = {t1,°°',tN} of possible values, where

o=tl<...<tN =L' N>n' and ti"‘-tiZA' i=1'...’N-1 .

1
The most obvious choice for T would be equispaced points

t, = (i-1)L/(N-1), i = 1,°**,N . The problem (5) now becomes
‘n
(6) minimize || £(u) - } a, cos g u || .
k=1
al'ooo'an

{Elf"'°r£n}CT

Since each ti gives rise to a basis function cos tiu , we
think of problem (6) as that of choosing a best partial basis
{cos &u : i=1,°+,n} from the full set of possible basis
functions {cos tiu : i=1,+++,N} to approximate the ideal

function f with respect to the specified norm.




&
§
i
4

il
2. THE ALGORITHM FOR THE PARTIAL BASIS PROBLEM

We now extend the partial basis problem (6) for the
selection of best antenna element locations and currents to
a more general context. Let hl"'°'hN be linearly indepen-
dent basis functions; we wish to choose a best partial basis
consisting of n (<N) of them to approximate a given func-

tion f . The problem is then

n
(7) minimize bl = 3 ash |
. o ST O
& eEvR o R R
1 b
1 n

< 3 o oo i
1_11 <1n5_N

Assuming we can compute the error

n
min fE 2=k 8 W
ay =y

3

for each fixed set of basis functions h ,o-o,hi , problem (7)

i1 n
can be solved in a brute force way by computing the error
corresponding to each of the (2) partial bases. However
the computer time required might well be prohibitive; hence a more
systematic method of inspecting the partial bases is desirable.
The algorithm we present is a direct generalization of
an algorithm due to Hocking and Leslie [5] for selecting a best

subset of independent variables in a linear regression analysis;

their concern was a least squares fit. The algorithm searches




for r = N - n basis functions to delete from the full set

of basis functions. We first compute for i = 1,¢°-,N,

E, = min - a.h,
al,...,a l'al+l' .'aN j#i

= error of a best approximation using all basis functions
except hi .

To avoid cumbersome notation we assume the basis functions
are renumbered so that E1 s E2 Kotne g EN 7 The following
simple lemma is the principle upon which the algorithm is

based.

LEMMA 1. Let I = {il,°~°,ir} < {1l,++*,N} be a set of r
indices with largest element ir o JEE

(8) min Ilf-Eailllf_E

{a; : if1) i+1l’
i¢1

then for any subset I'<€ {1,:++,N} which contains an index

1 > ir + 1 we have

n n

min a2 Za 4 |l 2 min FLE =3 ah |

{ai : if1'} i=1 Ha a; : ifg1} ii
ig1! ifI

In words, if inequality (8) is satisfied, a better partial
basis cannot be obtained by deleting a basis function with

index > i +1.
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Proof. min ||[£ -3 ah ||l > min ||£-) a.h ]|
{a;:if1') e T L iwy +1
if1’ i#i’
e 5 an i
=E,, 2 E, > min £ - a h, .
it i+ 1 {a;:i¢1} i=1 11
if1

We now formulate the algorithm.

Step 1. Compute Ejsoc By renumbering the basis functions

if necessary. 1If

N
min 1€ -1 ahi|| < E

ar+1,---,aN i=r+l r+l

then by Lemma 1 with I = {1,+++,r} we see that h o yreohy 5o

a best partial basis and the algorithm terminates. If

N
min HEED) a;h.|| > E
8,410 ray jer+y L+ 1 r+l

we proceed to Step 2.
Step 2. Compute the quantities

N
min [1£-Y a,h ||
(a;:if1,} (o1 =
1£1,

vhere I, consists of r of the indices 1,¢¢+,r+l .
Let Iz* be an index set giving the minimum over such index sets.
If

min ||1£ - ah. || < E
{a;:if1,") gy Ty 5 Pew
ifZ1

*
2 '
/

o SR
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then by Lemma 1 with I = 12* a best partial basis is obtained
by deleting those basis functions with indices in 12* and the
algorithm terminates. 1If

’

N
min ||£ -] a.h.|]| > E
{a :i¢I,*} gay 21 e
we proceed to the next step.

A general step of the algorithm can be described as follows.

Step gq. Compute the quantities
N
min FIE = ) - agh ]|
{a;:idI_} i=1
i q ;
I
ifg q
where Iq consists of exactly r of the indices 1l,+*+,r + q -1 .

Let Iq* be an index set giving the minimum over such index sets.

If

N
min ll£ - } ah || < E
{ai:i¢I *} i=1 - e b
g ifI >

then by Lemma 1 with I = Iq* a best partial basis is obtained

by deleting those basis functions with indices in Iq* o DL

N
min  j|f- ] - mBl]l >y B
(a; €1 *) jmy 21 £
/T *
if q
the algorithm proceeds to the next step. 1

Of course the algorithm will either terminate at some step

with a best partial basis or continue to search all partial bases;
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gl : hence a best partial basis will be obtained. The value of the
algorithm is in identifying a best partial basis after having
searched only a fraction of the (g) possibilities.

We have written a FORTRAN computer program to implement

the algorithm for the antenna design problem. It is presently
capable of doing weighted least squares problems; we plan to

extend it to solve minimax problems. As an illustration of the

TS M N G T e

procedure consider the following example.

EXAMPLE 1.

1 4f 0 < i
f(u) =

0 if 18 <u< .5

i The problem is to choose 9 out of the 21 basis functions

cos 2vku, k = 0,1,°++,20, to best approximate £(u) in the

least squares norm 1

[1£() - p(u) || ={I|f(u) - p(u)lzdu}l/2 .
[0,.1] v [.15,.5]
To avoid square roots, we actually work with ||f - p||2 .
The algorithm identifies a best partial basis consisting of the
basis functions corresponding to k =0,1,2,3,5,6,7,9,10;

notice this gives a much smaller aperture than the maximum

it

allowable. A best partial basis is actually attained in
Step 2, although it cannot be identified as such by the

algorithm until after Step 3. The algorithm examines only

r+qg-1 14
[ - ] = [12 = 91 partial bases out of the

21
possible [9] = 273,930. It should be noted, however,

kil o
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that the algorithm works exceptionally well for this example

because the basis functions are nearly orthogonal.

EXAMPLE 2. For f(u) as in Example 1, the problem is to
choose 4 out of the 21 basis functions cos 271k (.1l)u,
k=0, 1,°+,20, to minimize
4 2 4 2
.f [£(u) -.z a, cos 2wkj(.l)u] + (.01).2 ay :
J=l = J=l
[0,.11v [.15,.5]
This criterion has the desirable effect of controlling the
size of the coefficients; also numerical difficulties due
to ill-conditioning are reduced. The algorithm identifies
cos 2m(.7)u, cos 2m(.8)u, cos 2m(l.6)u, cos 2w (2)u as a best
partial basis after Step 4 after examining 1140 out of the
possible 5985 partial bases.
Figure 1 shows p(u) corresponding to a best partiél
basis for Example 1.

In [6] an improvement of the Hocking-Leslie algorithm

is given; this modification can be incorporated into our

algorithm as well.
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3. THEORETICAL RESULTS

In this section we state and prove a "continuous dependence”
ﬁ theorem and an existence theorem and apply them to the antenna
design problem. The following lemmas will be used in proving
the theorems. We will use the notation

n
‘ ll a lll= ll(all"'lan)ll1=izl Iail

for the 2l-norm of an n-vector of real numbers.

LEMMA 2. Let X be a real normed linear space with

norm | ls}|, £ dn X, 1lim lla(k) - a(°)||1 =0,
k>0
and lim Ilh.(k) - h.(o)ll =0 for i = 1,¢ee,n
ik i i
where h, ™ in x, i=1,.-e,n; k=0, 1,0 .
n n
Then 1lim [|€ - ¥ a, % h.(k)ll = ||£ - a.(o)h.(o)ll v
ko fa1 4 121 T
n n
Proof. £ - izl ai(k)hi(k) Pl e - izl ai(O)hi(O) I
n n
i ||(f Vo izl ai(k)hi(k)) = (f— izl ai(O)hi(O))|l é
n n ;-
' = f] 33 a e g s g W i
RS 121 g
T, (k) (k)_,. (0) T ra k). () (0)
b § El a (hi 'hi i+ Zl(ai a4 } hi | z

|A

k
a1 e max 10, ®on @)+ j1a® e 2@y« max|n @) .
1<i<n 1<i<n

e e S s,
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The conclusion of the lemma now follows since the convergent

sequence Ila(k)ll1 is bounded.
LEMMA 3. If 1lim llhi(k) ~ hi(O)ll =0, i=1,++,n where hi(k)
koo

are in the real normed linear space X for i = 1,°°*°*,n;

k =0, 1,°°°; hl(o),°'°.hé°) are linearly independent,

n
and lim [[a®™ || ==, then (]|} 2, ®n, ® ek =1, 2,000}
k-+o i=1

is unbounded.

n
(k), (k) is bounded.
[E a4 W By

Proof. Assume

=1
The sequence a(k)/||a(k)||1 is bounded and hence has a

(k)

m (k) (0)
convergent subsequence a /lla ||1 with limit, say, a

: n (k) (k (k_)
having Ila(o)lll =1 . Then 0 = lim || } a; o hy m)||//||a. » ||l

m-+>o i=1

(k)
“smll 8 h, |
e R NI T

(0), (0)
a;"'hy || by lemma 2.

i=1

n
Hence ) a, (0

i hi(o) = 0 which contradicts the linear
i=1

independence of hl(o),'-°,hn(°) and completes the proof of

the lemma.
Our first theorem concerns the continuous dependence of
a best approximation on the basis functions.
THEOREM 1/ Let X be a real normed linear space, f € X,

and hl(o),'°',hn‘o) linearly independent in X .
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n n
e 4 sl 1w Wy e e c B g 10
i=1 * ay,0ea T B

f . Then

. . 0
(1) If hy,ee-,h  are in X and ||h, - hi( )|| <$§,

. T————

n
i=1,°¢+,n then d<da'® 435 ) Iai(o)l
i=1

n
where d = inf g = azh || .

al,--~,an i=1

(ii) Given € > 0 there exists 8 > 0 such that
2 ; 0 .
if hy,+++/h are in X and ||h; - hi( )Il <§,i=1,+++,n,

L : then d‘® - ¢ <gq.

n
(iii) If 1 A, h.(o) is a unique best approximation to f by

linear combinations of hl(ol--°.rgf°% then given € > 0 there

exists d§ > 0 such that if hl,---,hn are in X and
Il hi-hi(O)II <6, im],e0¢,n,
we have |ai - ai(0)| <€ ,4i=1,*"*,n,
[l g b e T anl
where f - agh, || = dne |£ - a.h.|]|,
je) aj,eea T
n
. : - v (0)
Proof. (i) 4 = dnkE - e~y o aih | e [lee § g g ]
a,,*++,a dwy C o O i=1 % .
€ I=n

n n
i (0), (0) (0) . (0) _
| (£ izl & h ) W 121 a; " (hy hi) ||
n n
3 (0), (0) (0N i L0). -
| £ izlai e e izllai |+ | 1hy h |

A

i Sl ARSI 4500 GV

< al® 4. la, 044
i 1

U=

1
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(ii)

@ii)

Assume (ii) is false. Then there exist ¢ > 0 ,

h.(k) in X, k=1, 2,°°+, with

lim ||h G hi(O)ll

k>

5 (k)

=0, 1=1,°°*",n, and

, k=1, 2,*++, such that
n

flfie 7 A Mn Oliy ¢ al® o
Bal T 7

By lemma 3, lla(k)lll is bounded and hence {a'K)}

(k_)
has a convergent subsequence, say {a n }, with

limit, say, a* . Then

(0) : B k) () ¥ (0)
d'7’'- € > 1lim ||£ - ] a, "h, || =11g-] a* h, *V'{|
21 it Fh i

> d(o), a contradiction.

If the conclusion of (iii) is false, then there

exist hi(k) with lim ||h 1R hi(°)|| =0, i=1,°**+,n,

k+oo

(k) (k) 11

and a with ||£- Zlal

n
A k
- e lr- aihi”HiIIfIl

al,.oo,an i=1

such that ||a(k) - a(o)ll1 >¢e for k=1, 2,°°°,

By lemma 3, Ila(k)ll1 is bounded and hence {(a'®

}
(k.)
has a convergent subsequence {a J } with limit, say, 4.
(0) n (k ) (k )
Then ||f - z &h, " || =1lim | [|£f - ] a; hy | |
i=1 joe i=1

0)

=a'® py (i), (ii). This contradicts the

uniqueness of a(o) and completes the proof of the

theorem.
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We now wish to prove an existence theorem for the
generalization of problem (5) in section 1. The following
hypotheses will be useful.

Hl. X is a real normed linear space with norm || -« ||
and f € X .

H2. h(u, &) 1is a real function on [al, a2] X [Bl, 82]
such that for each & in [Bl, 82], h (e, E) id8 in  X.

H3. For any By £§ <+*°< g < B, the functions
h(u, El),°-°,h(u,£n) are linearly independent.

H4. There exists K > 0 such that for any &£,n in [61,82]
||h(u,&) - h(u, n)|| <K + |g - n]| .

H3. Notatton: T, = f(Ey s B) = B f By <-*32k < 8,

Ei+1 s Ei Z A' i=1'...'n-1}
(B, _ By)
for 0 < A o h o (so that T, is nonempty).

THEOREM 2 (EXISTENCE). Assume H1-H5. Then there exist

al,---,an, and ¢ ¢ '1'A such that

n n
| | £ (u) i£1 4 h(u, g ]]| = inf ||f(u)'1zlai h(u,£.) ||,

al'ooo,an i=

& TA

Proof. Let a(k), E(k) € TA be such that

v (k) (k) T
Um |l£ -7 a, " 'nw,e"™)||= inf || £() - y a htu,E ]| &
ko i=1 * i ay0°%%,a i=1 * .
n
£ ¢ TA

Since TA is compact, there exists a convergent subsegquence

E(kj) b E(k),

with limit, say,& h\TA.Using H4 we see lemma 3

applies with hi(k) = h(u, Ei(k)) and so ||a
(kj )

is bounded. Letting a M be a convergent subsequence

(k.)
3
1,
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i

; . with limit & we obtain
| | . (k; ) ; .
= lim ||f - . h(u, &, Y|l = |1£ - § &h(u,t)

by lemma 2, which completes the proof of the theorem.

We now examine the implications of Theorems 1 and 2.
4 Theorem 2 guarantees the existence of best element locations

* *

< L and currents al*,-o-, a for

*
Eo g tn n

problem (5); this follows by taking h(u, gi) = cos Eiu.

Theorem 1, part (i), guarantees that if 0 < 51 <ese< En <L

satisfy IEi - £i*l <o there is a constant C such that
. n
(9) d «dca boy ) la,*|
i=1
n
where d = inf HE» ) &, con E.ul]
&t .8 feg * e
1’ R
n
d% g -} a " cos & ull, and || - |}
: i i
i=1
is of the form (3) or (4) in section 1.

We can interpret inequality (9) as giving a bound on
the deviation of a best approximation to f wusing element

,? locations which are not optimal (not a solution of problem (5));

suboptimal locations could result from the discretization of

possible locations introduced at the end of section 1.

. Inequality (9) can also be interpreted as bounding the change

in the deviation due to a perturbation in the element locations,

which might occur physically.
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In closing, we mention the related work of Rice ([7],
Chapter 8); there the situation is more complicated because
£ ¢ Ty is not assumed.

Other work on the partial basis problem can be found

in [8-11]).

¥
;
1




i Tk 0l A A

10.

11.

-18-

REFERENCES

T. Lo and S. W. Lee, A study of space-tapered arrays,
IEEE Trans. Antennas and Propagation, Vol. 14, 1966,
pp. 22-30.

P. Dooley, The optimum design of small) nonuniformly
spaced arrays, IEEE Trans. Antennas and Propagation,
Vol. 20, 1972, pp. 636-637.

S. Lasdon, D. F. Suchman, and A. D. Waren, Nonlinear
programming applied to linear array design, J. Acoust.
Soc. Amer., Vol. 40, 1966, pp. 1197-1200.

G. Andreasen, Linear arrays with variable interelement
spacings, IEEE Trans. Antennas and Propagation, Vol. 10,
1962, pp. 137-143.

R. Hocking and R. N. Leslie, Selection of the best
subset in regression analysis, Technometrics, Vol. 9,
1967, pp. 531-540.

R. LaMotte and R. R. Hocking, Computational efficiency
in the selection of regression variables, Technometrics,
Vol. 12, 1970, pp. 83-93.

R. Rice, The Approximation of Functions; Vol II --
Advanced Topics, Addison-Wesley, Reading, Mass., 1969.

G. Lorentz, "Approximation by incomplete polynomials
(problems and results)", presented at the Rational
Approximation Conference at the Unlver51ty of S. Florida,
December 1976.

Borosh, C. K. Chui, and P. W. Smith, "Best uniform
approximation from a collection of subspaces"
manuscript..

Hasson, Comparison between the Degrees of Approximation
by Lacunary and Ordinary Algebraic Polynomials, Ph.D.
Thesis, Queen's University, 1977.

Boroshﬁ C. K. Chui, and P. W. Smith, "On approximation
by incomplete polynomials", manuscript.




i e S AR S 3 : Do . ” —

| REPORT DOCUMENTATION PAGE ey YT
? . REPORT NUMBER 0 7 9 (; 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
'} AFOSR-TR- 77 -
; 4. TITLE (end Subtitle) ; S. TYPE OF REPORT & PERIOD COVERED
; Interim
? ANTENNA DESIGN AS A PARTIAL BASIS PROBLEM
i 6. PERFORMING 0G. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Kenneth M. Levasseur and James T. Lewis AFOSR-T7-317T4 0

9. PERFORMING ORGANIZATION NAME AND ADDRESS /,. 10. PROGRAM ELEMENT, PROJECT, TASK
Department of Mathematics D BT e
University of Rhode Island 2304/A3

% Kingston, Rhode Island 02881
? 1). CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE /
1 Air Force Office of Scientific Research/NN June 1977 UV

(AFSC), Bolling AFB, Washington, DC ' 20332 wowsencr sices
18

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED
1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (ci the abstract entered in Bleeh-ZO. it different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and identily by block number)
Antenna, approximation, norm, least squares, uniform (norm),
normed linear space, best approximation.

ABSTRACT (Continue on reverse side If necessary and identify by block number)
z“I’he following problem comes from that of choosing best locations
"for antenna elements in a linear apra Given a function f and
linearly independent functionq(f LR choose, for a given

n(<N), n of the h's to give a closast 1 ar approximation to f.
Both a computational algorithm d th oretical results are given.

‘ksusl hoobz

) RSN,

DD , on'ss 1473  €oiTion OF 1 NOV 68 1 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dafa Entered)




